
The Magazine for Professional Testers

June, 2008

IS
SN

 1
86

6-
57

05
 		

w

w
w.

te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fre
e

ex
em

pl
ar

		

pr
in

te
d

in
 G

er
m

an
y

Test Management & Requirements
Experience & Tools

2

100%

Pantone 260

80% 60% 40% 20%

Pantone 258

100% 80% 60% 40% 20%

c:60
m:100�
y:0
k:34

Pantone 260

c:48
m:80�
y:0
k:27

c:36
m:60�
y:0
k:20

c:24
m:40�
y:0
k:14

c:12
m:20�
y:0
k:7

Pantone 258

c:43
m:76
y:0
k:0

c:34
m:61�
y:0
k:0

c:26
m:47�
y:0
k:0

c:17
m:30�
y:0
k:0

c:9
m:15�
y:0
k:0

© iStockphoto

Treasuries from the dump -
The software tester as an IT-archaeologist

by Dr. Konrad Schlude
© iStockphoto

Abstract
What has archaeology to do with software test-
ing? From a simplified point of view, archaeol-
ogy is about finding, securing, and interpret-
ing human artefacts; software testing is about
deriving test cases and running these test cas-
es in a test environment. Whereas one of these
topics is quite often “digging in the dirt” in
not such nice weather and environment, the
other is done in front of a computer in an air-
conditioned office. The aim of this article is to
show that the skills of a software tester can be
used to do some kind of IT archaeology. Simi-
lar to an archaeologist who examines former
dump sites and finds archaeological treasures
there, we analyzed two areas of “dump data”
of an IT system. With the results of this analy-
sis, the underlying problems could be solved
at the roots instead of fighting the symptoms.
From the darkness of unnoticed garbage true
treasures could be salvaged.

1. Introduction
It is possible to find treasures in the dump.
Sometimes, archaeologists find very interest-
ing things in former dump sites or mediaeval
latrines. Especially in the deoxygenated cli-
mate of latrines, wooden objects can outlive
several centuries. In their excavations, archae-
ologists have found mediaeval wooden cut-
lery and glasses frames. Outside this special
climate, these things would not have survived
the centuries.
So, a dump can give important information
about life in former times [2].

1.1. Analysis of “Dump data”
Are there dark dump sites with hidden trea-
sures in IT as well? Is there “dump data” that
can be analyzed with profit? And what has
testing to do with it?
 In the following, we report on an IT project
in which there was some kind of “dump data”.
Both in the development and production of an
application data was accumulated and nobody
took notice of the accumulation of that data.
From our experience, this is the rule and not
an exception.

2. The application and the development
process
In order to better understand, we will give
some details of the application and the de-
velopment process. It is an application in the
banking area. The customer company con-
sists of several business units, and originally
the application was developed for the prime
business unit of the customer company. In the
meantime, the application has become multi-
tenancy, i.e., the other business units can work
with adopted versions of the application.
The application can be used to choose a strat-
egy from a list of proposed strategies, and the
proposed strategies depend on the business
unit (see Figure 2). Every night, batch process-
ing checks whether the selected strategies are
consistent with the current situation.

Besides an internal intranet version, there is an
external version that can be accessed via the
Internet.
It is a browser-based J2EE application with a
mainframe component (CORBA, DB2, and
batch) and a UNIX component (Oracle DB
and batch). Therefore, there are several devel-
oper teams that are quite independent.

Figure 1 - Wooden cups from the High Middle Ages,
Stein am Rhein (Switzerland)2

Figure 2 - Relationship between business units, strategies and clients

57The Magazine for Professional Testerswww.testingexperience.com

100%

Pantone 260

80% 60% 40% 20%

Pantone 258

100% 80% 60% 40% 20%

c:60
m:100�
y:0
k:34

Pantone 260

c:48
m:80�
y:0
k:27

c:36
m:60�
y:0
k:20

c:24
m:40�
y:0
k:14

c:12
m:20�
y:0
k:7

Pantone 258

c:43
m:76
y:0
k:0

c:34
m:61�
y:0
k:0

c:26
m:47�
y:0
k:0

c:17
m:30�
y:0
k:0

c:9
m:15�
y:0
k:0

http://www.schlu.de

The application has been developed over a pe-
riod of about five years, and there is further
development. In the first phase, a lot of func-
tionality was added. After that, the amount of
new functionality was decreased, and therefore
many team members left the project. Other ex-
ternal reasons led to “the great escape” from
the project, especially in the requirements en-
gineering team and in the JAVA team, many
members left.

3. Error messages from batch process-
ing
As mentioned above, batch processing checks
the consistency of the selected strategies and
the current situation. Shortly after this func-
tionality had been deployed, the batch process-
ing started to write error messages to a file. It
was known that some of these error messages
were related to external data delivery. There-
fore, and since there was a lot of new func-
tionality to develop, the error messages were
ignored. Within two years, the number of daily
error messages grew to 6,000. It became ob-
vious that this number had to be reduced.

3.1. Results of the analysis

3.1.1. Changing the business unit
Most of the error messages (about 90%) were
caused by changing the business unit. If a cli-
ent is serviced by another business unit than
before, this leads to an inconsistent situation
(see Figure 3).
An automatic selection of a new strategy is not
possible. In order to reduce the number of er-
ror messages, the application was enhanced to
identify such cases on its own.
3.1.2. The -1 bug: quantum mechanics in IT?
A special problem was the so called -1 bug.
In the database, there was one record with the
strategy number -1 that stands for ‘undefined’,
and this value -1 was not a legal value. Al-
though there was only one such record, hid-
den in the large number of other problems,
the problem was analyzed. This was due to

the fact that the unknown reason could lead to
other more serious problems. To analyze the
situation, the developers were interviewed.
The batch developers said that their program
does not modify the value, the GUI developers
said that there is a mechanism that blocks such
illegal values. So, how could this value end up
in the data base?
The situation set us thinking of quantum me-

chanics: a particle passes through a barrier
although it has not sufficient energy for the
passage (due to classical mechanics). Since
the lead of the developers was a physicist, we
called the -1 value a “quantum tunnelling’.
It took a long time to find out a way to repro-
duce the -1 value. It was a GUI bug, and in
order to reproduce the -1, abstruse navigation
through the application with more than 20
clicks was needed.
The bug was fixed by an improved consistency
check. From a testing point of view, it was a
very interesting bug as well. Quite often, de-
velopers respond to bug logs by claiming “But
no user clicks this way!”. The quantum tun-
nelling of the -1 bug is an illustrative example
that users do everything they can do, although
developers do not expect that.

3.1.3. Batch bug
For a special type of clients, the value of the
business unit was updated in a wrong way
and this led to similar error messages such as
changing the business unit. In the beginning
of the analysis, this problem was overseen in
the large number of other error messages. This
was one example of the well-known fact that
a large number of uninteresting messages hide
the interesting one.

3.1.4. Other bugs
Beside the problems mentioned above, sev-
eral GUI bugs were detected just by clicking
through the application. Especially the attempt
to reproduce the -1 bug showed a way to gen-
erate inconsistent situations and exceptions.

4. Analysis of bug reports
Every year, there are several releases for main-
tenance and further development of the appli-
cation. In each of these releases, several hun-
dred bugs are reported and for defect tracking
a tool is used. It is documented in which com-
ponent the bug appeared, and for the JAVA
part, the sub-component is logged as well.
The number of bugs depends on the amount of

new functionality. In one release with a lot of
new functionality there were about 1,200 bug
reports, in a maintenance release there were
about 200 bug reports.
Before, there was no attempt to find a structure
in the bug reports.

Important notice: Quite often, bugs are the
results of cascades of misunderstandings. For

instance, a stakeholder gives unclear explana-
tions, the requirement engineer does not rec-
ognize this and writes unclear specifications,
the developer does not recognize this and
writes wrong code. In such situations, there is
no “guilty guy” and therefore, it is the wrong
attempt to evaluate the work of a developer by
the analysis of bug reports. The fact that the
analysis of bug reports should be done with
regard to social relationship is a well known
fact [1]: “It should be mentioned here that
some questions can be very dangerous for the
personal relationships with in the group and
should, therefore, be addressed only in a very
sensitive and objective fashion.“

First, the bug reports were sorted by com-
ponent. Most of the bugs were related to the
JAVA component. Only a few bugs were re-
lated to the mainframe or UNIX, and there
was no visible pattern. Therefore, the analysis
was restricted to the bugs related to the JAVA
component. Sorting by sub-component did not
show any pattern, the bugs ranged from typing
errors to serious exceptions. Note that this is
an indication that the present division into sub-
component is not helpful.
Another pattern became visible. Many bugs
were neither regression bugs nor bugs of the
new functionality; they showed up at the in-
terface between a previous application and
the new functionality. One example was the
display of security numbers. In a previous
release, it had been defined that the security
numbers should be displayed due to the loca-
tion of a user. However, the new functionality
always showed the Swiss security number in-
stead of ISIN or the German WKN.
This pattern could be found in other areas
as well. For instance, the new functionality
worked well for the internal version of the ap-
plication, however there was an exception in
the external version. For the various business
units, similar effects appeared. The applica-
tion worked well for the prime business unit;
however, the implementation of the special
requirements of the other business units was
not correct.
27% of the bug reports were of this type.

Obviously, “the great escape from the proj-
ect” had caused a loss of know-how. Both
stakeholder and requirement engineers were
focussed on the prime business unit, and
therefore, the special requirements of the other
business units were not specified well enough.
The bugs were found in testing, since the test
team was not affected by “the great escape “.
It is not surprising that the loss of know-how
leads to bugs, however, the 27% showed that
there had to be an improvement.
To reduce the number of such bugs, a checklist
was provided. The most important “dimen-
sions” were illustrated with examples. Espe-
cially, the special requirements of internal/
external versions and the several business
units are mentioned. The check list does not
give answers; with the help of this check list,
every requirements engineer, every developer,
and every tester can ask the right questions to
identify gaps.

Figure 3 - Inconsistent situation after changing the business unit

58
100%

Pantone 260

80% 60% 40% 20%

Pantone 258

100% 80% 60% 40% 20%

c:60
m:100�
y:0
k:34

Pantone 260

c:48
m:80�
y:0
k:27

c:36
m:60�
y:0
k:20

c:24
m:40�
y:0
k:14

c:12
m:20�
y:0
k:7

Pantone 258

c:43
m:76
y:0
k:0

c:34
m:61�
y:0
k:0

c:26
m:47�
y:0
k:0

c:17
m:30�
y:0
k:0

c:9
m:15�
y:0
k:0

The Magazine for Professional Testers www.testingexperience.com

5. Conclusions
Our conclusion is a contradiction to the notion of dump data: there is no such dump
data. In principle, everything can be interesting and used to identify problems or
to increase quality. In this article, we considered error messages from the batch
processing and bug reports from the test process. In both cases, the sources of the
problems could be identified and concrete suggestions for improvement were de-
veloped.
Most of the error messages were caused by external problems. However, several
bugs were found as well. Whereas bugs in batch processing could be identified quite
easily, the GUI bugs were hard to identify since there is large “distance” between
the GUI and the error message of the batch processing. This is the reason why such
an analysis cannot be done by a single developer. Typically, batch developers do not
know the GUI, and GUI developers do not know the batch processing.
One reason for the importance of productive error messages is that bugs with low
appearance priority appear in the mass test of the users. It is not surprising that the
-1 bug was not found during testing, because no tester clicks that way.
Testing comes at the end of the development process. The result of testing, i.e., bug
reports, can be used to gain information on the larger development process. This is
similar to the error messages of the batch processing.
It is not a new idea that bug reports should be analyzed [1]; the well-known book
[3] “How to break software” is the result of a bug analysis. Interestingly, analysis of
bug reports is not part of testing education yet.
Bug reports and error messages are two possible ”heart rate monitors“ of an appli-
cation. It is important to have such heart rate monitors. Another important aspect is
to check these monitors.

5.1. Connection to software testing
There is one question to be answered: What is the connection to software testing?
The answer is that for the analysis, typical tester skills are needed. One has to
understand how the application and the development process work, the overview
is needed. Furthermore, some “bug hunting passion” and the strong will to gain
insight and to understand the problems are necessary.
From my point of view, the examples in this article illustrate how interesting soft-
ware testing can be.

6. Bibliography

A. Endres:1.	
An Analysis of Errors and Their Causes in System Programs
IEEE Trans. Software Engineering, Vol. SE-1, No. 2, June 1975, 140-149
Kantonsarchäologie Schaffhausen (Hrsg.):
EX TERRA LUX: Geschichten aus dem Boden. Schaffhauser Archäologie des 2.	
Mittelalters
Schaffhausen, 2002
J. Whittaker: 3.	
How to Break Software. A Practical Guide to Testing
Addison Wesley, 2002

7. Wikipedia Links

Batch processing: •	 http://en.wikipedia.org/wiki/Batch_processing
Multitenancy: •	 http://en.wikipedia.org/wiki/Multitenancy
Quantum tunnelling: •	 http://en.wikipedia.org/wiki/Quantum_tunnelling

2 Source: Kantonsarchäologie Schaffhausen, Switzerland [2]

Konrad Schlude holds the Diploma in
Mathematics from the University of
Freiburg and a PhD in Theoretical Com-
puter Science from ETH Zürich.
Since 2004, he is with COMIT AG (Zürich)
and works as a consultant in the area of
software testing. He focuses on banking
software.
Konrad is interested in test automation
and has presented some results of his
work at the 2nd “SAQ Software-Tester
Forum” in Zürich in 2006.

Among his interests in mathematics and
software testing, Konrad is an active
member of the town council of Jestetten
(Germany).

Biography

59The Magazine for Professional Testerswww.testingexperience.com

100%

Pantone 260

80% 60% 40% 20%

Pantone 258

100% 80% 60% 40% 20%

c:60
m:100�
y:0
k:34

Pantone 260

c:48
m:80�
y:0
k:27

c:36
m:60�
y:0
k:20

c:24
m:40�
y:0
k:14

c:12
m:20�
y:0
k:7

Pantone 258

c:43
m:76
y:0
k:0

c:34
m:61�
y:0
k:0

c:26
m:47�
y:0
k:0

c:17
m:30�
y:0
k:0

c:9
m:15�
y:0
k:0

