
The Magazine for Professional Testers

December, 2008

IS
SN

 1
86

6-
57

05
 		


w

w
w.

te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fre
e 

ex
em

pl
ar

		


pr
in

te
d 

in
 G

er
m

an
y

Test Automation -
Does it make sense?

4

100%

Pantone 295

80% 60% 40% 20%

Pantone 279

100% 80% 60% 40% 20%

c:100
m:56
y:0
b:34

cmyk

c:80
m:45
y:0
b:28

c:60
m:39
y:0
b:20

c:40
m:22
y:0
b:14

c:20
m:12
y:0
b:7

cmyk

c:64
m:34
y:0
b:0

c:55
m:27
y:0
b:0

c:41
m:20
y:0
b:0

c:28
m:14
y:0
b:0

c:14
m:7
y:0
b:0

© iStockphoto



47The Magazine for Professional Testerswww.testingexperience.com

100%

Pantone 295

80% 60% 40% 20%

Pantone 279

100% 80% 60% 40% 20%

c:100
m:56
y:0
b:34

cmyk

c:80
m:45
y:0
b:28

c:60
m:39
y:0
b:20

c:40
m:22
y:0
b:14

c:20
m:12
y:0
b:7

cmyk

c:64
m:34
y:0
b:0

c:55
m:27
y:0
b:0

c:41
m:20
y:0
b:0

c:28
m:14
y:0
b:0

c:14
m:7
y:0
b:0

1 Brian LeSuer: Supporting Steps for Successful Test Automation Projects, SQGNE, 2004-05 Presentations
2 The notion of programming guidelines might be surprising in this context. However, typically manual editing of the scripts is needed although powerful capture-replay 
tools are used. Within one automation project the amount of manual editing was 80%, and only 20% of the time were used for capturing. And since there is a lot of editing / 
programming, there should be programming guidelines

Abstract:
Test automation can be regarded as a risk investment. Some authors 
report on a reduction in manual test effort of 80%. There is, however, 
the number of about 63% of failed test automation projects. On one 
hand, there is a high potential gain, on the other hand there is a high 
probability of loss of investment. In order to find out why there is such a 
gap, we will consider two test automation projects within one company. 
Whereas one of these projects is considered as a success story, the 
other was just an investment of several man years without any contri-
bution to the overall software development project. As these examples 
will show, the success depends on many factors, especially on a good 
setup.

Obviously, tools are needed for test automation. And every producer of 
such a tool will argue that his tool is a good one. The question of which 
tool to use is an important one in test automation, since every tool has 
its advantages and disadvantages. However, the tool question is not the 
only question in test automation. It is just one of the reasons why many 
automation projects fail. Brian LeSuer puts the number of failed auto-
mation projects at 63%.
To illustrate some reasons why test automation projects can fail, I would 
like to give two examples of software development projects. In both 
projects, test automation was initialized. In one these projects, test au-
tomation was and still is regarded as an success, since and there was an 
important contribution to the software development over several years, 
In the other project, test automation was nothing but an investment of 
several man years without any remarkable outcome. Interestingly, both 
projects were in the same company, in the same building, and on the 
same floor.
Let’s call these projects Project A and Project B. Although there are 
many similarities, there are also many differences. In Project A, test 
automation emerged from the test team. The test team developed a 
strategy of what to automate, so knowledge about the application was 
available for test automation. In Project B, an external automation team 
was brought into the software development project, and this automation 
team acted as a closed group, seperated from the other teams. They did 
something, but outside the automation team nobody knew what was 
going on. 
In Project A, the test team checked every run of the test robot. With their 
knowledge, the team members were able to analyze every outcome of 
every run. If a modification of a script was necessary, a correspond-
ing order of what to modify was generated. On the other hand, when a 
bug was detected, it was reported immediately to the development team 

with the request that the bug should be fixed as soon as possible. And 
the developers fixed the bug as they were told to do. So test automation 
kept running and kept finding bugs.
In Project B, the automation team was not able to do anything similar, 
since it was separated from the knowledge of the other teams. Failed 
test cases were just red marks in the report, and no further analysis 
could be made.
From the start, maintenance of the test automation was an important 
topic in Project A. There was a concept of how to react to changes of 
the application, i.e., the scripts were organized in a modular way. Ev-
ery GUI element (e.g., button, link, entry field etc.) was identified by a 
variable stored in a single repository. Furthermore, the team members 
developed programming guidelines for generating scripts. With this, the 
amount of time needed for maintenance was quite small.
Again, Project B was different. The automation team just used the cap-
ture functionality of the tool without any idea of modularization of the 
scripts. In the beginning there was very fast progress. After a while, 
however, they were not able to react anymore to the changes in the ap-
plication. It was the typical situation where a small change in the appli-
cation (e.g. button was renamed) led to the modification of an enormous 
number of test cases. The automation team was busy all the time, but 
they could not follow the development progress. In order to solve spe-
cial tasks in some test cases, the automation team programmed scripts. 
But since there was no concept behind these scripts (i.e., there were 
no programming guidelines), no one was able to understand the scripts 
after a short while. 
It is not surprising that the automation within Project B failed. Virtu-
ally everything went wrong from the beginning. On the other hand, test 
automation in Project A also had a possibility of failure. For instance, 
the help from the developers was crucial for success, but there was a 
lot of goodwill, even though this had not been defined before. Since the 
personal communication within the triangle of test team, automation 
team and the developers was OK, every problem could be managed. 
One reason for the success in Project A was that the involved people 
brought their knowledge together.

This leads to the following conclusion. Test automation is not a risk 
investment; it is just a waste of time and money if you don’t have a good 
setup. Just doing “something” with a tool is not a good idea. However, 
if you define the right frame and bring knowledge and people together, 
then you have a good chance to substantially improve software devel-
opment. 

Guest Column

Risk investment Test Automation?
by Konrad Schlude

http://www.schlu.de

